ANSI C Cryptographic API Profile
for AES Candidate Algorithm Submissions

Revision 5: April 15, 1998
1. Overview

This document specifies the ANSI C interface profile for implementations of AES
candidate algorithms. C implementations shall support the syntax and parameterization of
the interface profile messages as described in this API. The functions specified in this AP
have return values listed that are largely used to supply error codes in the event of
incomplete execution of the routines. The error values listed are not meant to be an
exhaustive list. If additional error codes are useful for your implementation, please
provide them.

2. Key Generation Interface

Each AES submitter will be required to implement this interface because NIST anticipates
that some candidate algorithms will have unique requirements for and methods of key
generation. Implementations shall support key of lengths of 128, 192, and 256-bit.
Additionaly, if an algorithm can support other key sizes, these should be supported in the
code as well.

The ANSI C key generation programming interface uses one structure and one routine to
manipulate keys. The structure, keylnstance, contains the length of the key, the raw key
material, a direction flag that indicates if the key will be used for encryption or decryption,
and any agorithm specific key information such as the key schedule used in DES. All
implementations must be sure to document any algorithm-specific parameters and
their use.

The key function, makeKey(), is called with the appropriate parameters which get loaded
into the keylnstance structure. These parameters are then used to perform any key
specific setup that is necessary, e.g., allocation and initialization of akey schedule table.

typedef struct {
BYTE direction;
int keyLen;
char keyMateria[MAX_KEY_SIZE+1];
[* The following parameters are algorithm dependent */
} keylnstance;

(4/15/98 — changed BYTE *keyMaterial to char
keyMaterial[ MAX_KEY_SZE+1] to avoid malloc and free calls.)



s makeKey

int makeK ey (keylnstance *key, BY TE direction, int keyLen, char
*keyMaterial)

Initializes a keylnstance with the following information:
direction: the key is being setup for encryption or decryption
keyLen: The key length (128, 192, 256, or others) of the key, and
keyMaterial: The raw key data.

Parameters:
key: a structure that holds the keylnstance information
direction: the key is being setup for encryption or decryption
keyL en: an integer value that indicates the length of the key in bits.
keyMateria: the raw key information (keyLen/4 ASCII characters
representing the hex values for the key). For example,
“0123456789abcdef 0123456789%abcdef" is the string for a key with the
binary value:
0000000100100011010001010110011110001001101010111100...

Returns:
TRUE - on success
BAD_KEY_DIR - directionisinvalid (e.g., unknown value)
BAD_KEY_MAT - keyMaterid isinvalid (e.g., wrong length)

3. Cipher Object Interface

The ANSI C cipher programming interface uses one structures and a set of functions to
manipulate cipher data. The structure, cipherinstance, contains fields for the mode being
used (e.g., Electronic Codebook, Cipher Block Chaining, or 1-bit Cipher Feedback) and
an initialization vector necessary for some modes. Additiona agorithm-specific
parameters may be added if necessary. All implementations must be sure to document
any algorithm-specific parametersand their use.

The cipher routines get used in following way. First, cipherinit() is caled with the
appropriate parameters to be loaded into the cipherinstance structure. cipherlnit() will
perform any additional agorithm setup that is required, e.g., establishing an Initiaization
Vector. Then full blocks of data are supplied to either blockEncrypt() or blockDecrypt()
for ciphering. The data passed to blockEncrypt() and blockDecrypt() must be integral
block units, i.e., n*blocksize bits long (this will alow for more accurate testing of bulk
encryption times). If any algorithm specific parameters are needed, they should be loaded
before calling cipherinit().



typedef struct {
BYTE mode;
BYTE IV[MAX_IV_SIZE];
/* Add any algorithm specific parameters needed here */
} cipherlnstance;

(4/15/98 — changed BYTE *1V to BYTE IV[MAX_1V_SZE] to avoid malloc and
free calls.)

% cipherlnit
int cipherlnit(cipherlnstance * cipher, BY TE mode, char *1V)

Initializes the cipher with the mode and, if present, sets the Initialization
Vector. If any algorithm specific setup is necessary, cipherlnit() must take
care of that aswell. ThelV parameter passed to cipherlnit() isan ASCII
hex string representation of the IV, i.e. the |V passed as a parameter will
typicaly be 32 byteslong. ThelV field of the cipherlnstance structure is
the binary value of the IV, i.e. it will typically be 16 bytes long.

Algorithm specific parameters must be loaded into the cipherinstance
structure before calling cipherlnit(). For example, if the algorithm can use
other block sizes than 128-bits, afield should be added to the
cipherlnstance structure and the value being used should be loaded into the
cipher parameter before calling cipherlnit().

Parameters:
cipher — the cipherlnstance being loaded
mode - the operation mode of this cipher (thisis one of
MODE_ECB, MODE_CBC, or MODE_CFB1)
IV - the cipher initialization vector, necessary for some modes

Returns:
TRUE - on success
BAD_CIPHER_MODE - the mode passed is unknown.

% blockEncrypt

int blockEncrypt(cipherinstance * cipher, keylnstance *key, BY TE *input, int
inputLen, BY TE *outBuffer)

Uses the cipherlnstance object and the keyInstance object to encrypt one
block of datain the input buffer. The output (the encrypted data) is
returned in outBuffer, which is the same size asinputLen. The routine



returns the number of bits enciphered. inputLen will typically be 128 hits,
but some algorithms may handle additional block sizes. Additionadly, it is
acceptable to use this routine to encrypt multiple “blocks’ of data with one
call. For example, if your algorithm has ablock size of 128 hits, it is
acceptable to pass n* 128 bits to blockEncrypt().

(4/15/98 — Allow blockEncrypt() to handle an integral number of
algorithm blocksin one call.)

Parameters:
cipher — the cipherlnstance to be used
key — the ciphering key
input - the input buffer
inputL en - the input length, in bits
outBuffer — contains the encrypted data

Returns:
The number of bits ciphered, or
BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
BAD_KEY_MATERIAL —direction not set for DIR_ENCRYPT

% blockDecrypt

int blockDecrypt(cipherlnstance * cipher, keylnstance *key, BY TE *input, int
inputLen, BY TE *outBuffer)

Uses the cipherinstance object and the keylnstance object to decrypt one
block of datain the input buffer. The output (the decrypted data) is
returned in outBuffer, which is the same size as inputLen. The routine
returns the number of bits deciphered. inputLen will typically be 128 bits,
but some algorithms may handle additional block sizes. Additiondly, it is
acceptable to use this routine to decrypt multiple “blocks’ of data with one
call. For example, if your algorithm has ablock size of 128 hits, it is
acceptable to pass n* 128 hits to blockDecrypt().

(4/15/98 — Allow blockDecrypt() to handle an integral number of
algorithm blocksin one call.)

Parameters:
cipher — the cipherlnstance to be used
key — the ciphering key
input - the input buffer
inputL en - the input length, in bits
outBuffer — contains the decrypted data



Returns:
The number of bits ciphered, or
BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
BAD_KEY_MATERIAL —direction not set for DIR_DECRYPT



/* aes.h */

/* AES Ci pher header file for ANSI C Subm ssi ons
Law ence E. Bassham 1]
Conmput er Security Division
Nati onal Institute of Standards and Technol ogy

This sanmple is to assist inplenenters devel oping to the
Cryptographic APl Profile for AES Candi date Al gorithm Subni ssions.
Pl ease consult this docunent as a cross-reference.

ANY CHANGES, VWHERE APPROPRI ATE, TO | NFORVATI ON PROVIDED IN TH' S FI LE
MUST BE DOCUMENTED. CHANGES ARE ONLY APPROPRI ATE WHERE SPECI FI ED W TH
THE STRI NG " CHANGE POSSI BLE'. FUNCTI ON CALLS AND THEI R PARAMETERS
CANNOT BE CHANGED. STRUCTURES CAN BE ALTERED TO ALLOW | MPLEMENTERS TO
| NCLUDE | MPLENMENTATI ON SPECI FI C | NFORVATI ON.

*/
/* 1 ncl udes:

Standard i nclude files
*/

#i ncl ude <stdi o. h>

/* Defines:
Add any additional defines you need
*/
#defi ne DI R_ENCRYPT 0 /* Are we encrpyting? */
#defi ne DI R_DECRYPT 1 * Are we decrpyting? */
#defi ne MODE_ECB 1 * Are we ciphering in ECB node? */
#defi ne MODE_CBC 2 * Are we ciphering in CBC node? */
#defi ne MODE_CFB1 3 * Are we ciphering in 1-bit CFB node?
*/
#defi ne TRUE 1
#defi ne FALSE 0

/* FError Codes - CHANGE PCSSI BLE: inclusion of additional error codes
*/

#defi ne BAD KEY_DI R -1 /* Key directionis invalid, e.g.,
unknown val ue */

#def i ne BAD KEY_ MAT -2 [/* Key material not of correct
l ength */

#defi ne BAD KEY_INSTANCE -3 /* Key passed is not valid */

#def i ne BAD ClI PHER MCDE -4 [* Parans struct passed to
cipherlnit invalid */

#defi ne BAD Cl PHER STATE -5 /* (Cipher in wong state (e.g., not

initialized) */

/* CHANGE PCSSI BLE: inclusion of algorithmspecific defines */

#def i ne MAX KEY_SI ZE 64 /* # of ASCII char’s needed to
represent a key */
#def i ne MAX |'V_SI ZE 16 /* # of bytes needed to

represent an IV */
/* Typedefs:
Typedef' ed data storage el enents. Add any algorithm specific

paranmeters at the bottom of the structs as appropriate.
*/



t ypedef unsi gned char BYTE

/*

The structure for key information */

typedef struct {

/*

BYTE direction; /* Key used for encrypting or decrypting? */

i nt keylLen; /* Length of the key */

char keyMaterial [ MAX KEY_SIZE+1]; [/* Raw key data in ASCII,
e.g., user input or KAT values */

/* The followi ng paranmeters are al gorithm dependent, replace or

add as necessary */

BYTE *KS; /* (exanple)Pointer to a Key Schedule, a la
DES */

} keyl nst ance;

The structure for cipher information */

typedef struct {

BYTE node; /* MODE_ECB, MODE_CBC, or MODE _CFBl1 */

BYTE |IV[MAX IV _SIZE]; /* A possible Initialization Vector for
ci phering */

/* Add any al gorithm specific paranmeters needed here */

i nt bl ockSi ze; /* Sanpl e: Handl es non-128 bit bl ock sizes

(if available) */
} cipherlnstance;

Function protoypes */
makeKey(keyl nst ance *key, BYTE direction, int keylLen
char *keyMaterial);

ci pherlnit(cipherlnstance *ci pher, BYTE node, char *1V);

bl ockEncrypt (ci pherl nstance *ci pher, keylnstance *key, BYTE *input,
i nt inputlLen, BYTE *outBuffer);

bl ockDecrypt (ci pherl nstance *ci pher, keylnstance *key, BYTE *input,
i nt inputlLen, BYTE *outBuffer);



